WT9932P4-MINI-A1 Feature Overview

  • WT9932P4-MINI-A1
  • ESP32-P4
Update history
Date Version Author Update content
2025-11-13 1.0.0 Pail First release

1. Introduction

WT9932P4-MINI-A1 is a high-performance multimedia development board launched by Shenzhen Wireless-tag Co., Ltd. It is based on Espressif’s ESP32-P4 chip, featuring a dual-core RISC-V processor running at 400MHz. The core module model is WT0132P4-A1. This development board focuses on full-featured interfaces and multimedia processing capabilities. It is suitable for applications such as smart home control, industrial HMI, medical devices, security monitoring, and multimedia terminals. With low cost, low power consumption, and high integration, it is ideal for rapid prototyping of products like IPC and AIoT devices.


1.1 🔧 Core Hardware Specifications

  • Main Controller: Powered by the Espressif ESP32-P4, featuring a high-performance RISC-V 400MHz processor and multiple multimedia subsystems, including a JPEG codec, Pixel Processing Accelerator, H.264 video encoder, and MIPI interface.

  • Network Interface: Equipped with a MINI-PCIe interface that supports CAT1 modules, Sub-1G modules, or Wi-Fi extension boards for wireless communication. It can also be paired with a POE expansion board (IEEE 802.3af) to provide wired Ethernet networking (10/100Mbps adaptive) and POE power supply (48V input), ensuring reliable networking and power stability in industrial environments.

  • Multimedia Interfaces: Natively supports both MIPI-CSI and MIPI-DSI interfaces.

    • MIPI-CSI connects to MIPI camera modules and supports 2-lane x 1.5 Gbps.
    • MIPI-DSI connects to MIPI display panels and supports 2-lane x 1.5 Gbps.

    Developers can freely choose peripherals compatible with the onboard MIPI connectors.


1.2 🛠️ Design Features

  1. High-speed USB 2.0 Type-C/Type-A interface, programmable via ESP-IDF.
  2. Onboard power indicator and physical power switch for convenient power control.
  3. MIPI-CSI FPC connector (0.5mm pitch, 22 pins) for external camera modules.
  4. MIPI-DSI FPC connector (1.0mm pitch, 15 pins) for LCD expansion boards.
  5. MINI-PCIe connector (0.8mm pitch, 52 pins), wired to the core module’s UART and DM/DP signals, allowing external communication modules or expansion boards for wireless data transmission.

1.3 📡 Primary Application Scenarios

  • Data Acquisition: Features 45 general-purpose GPIOs that can be mapped to SPI, I2C, I2S, etc. Includes built-in ADC/DAC and temperature sensing system, enabling easy integration with various sensors.

  • Industrial Control: With Wi-Fi & Sub-1G expansion boards, it can support long-range Sub-1G communication and cloud connectivity via Wi-Fi, suitable for industrial gateway applications.

  • HMI Interfaces: Supports up to 7-inch (and smaller) MIPI or RGB displays plus capacitive touch, ideal for localized monitoring interfaces based on frameworks like LVGL.

  • Security & Vision Terminals: With MIPI-CSI/DVP/USB camera interfaces supporting 1080P@30fps image capture, combined with the 400MHz RISC-V core and ESP-WHO algorithms, it enables edge AI inference such as facial recognition.


1.4 ⚙️ Development Advantages

  • The ESP32-P4 can be developed using Espressif’s ESP-IDF SDK.
  • Official example projects are provided for learning and reference.
  • Multiple MIPI-DSI and MIPI-CSI examples are available on Qiming Cloud’s GitHub, ready to download and flash.

2. Pin Description

The table below lists the pin names and functions for the J5 header.

Name Function
IO33 GPIO33, I3CMST_SDA, GPSPI SPI2 WP, EMAC PHY TXEN, DBG_PSRAM_DQ5
IO26 GPIO26, USB1P1_N1
IO32 GPIO32, I3CMST_SCL, GPSPI SPI2 HOLD, EMAC RMII CLK, DBG_PSRAM_DQ4
IO27 GPIO27, USB1P1_P1
IO35 GPIO35, GPSPI SPI2 IO5, EMAC PHY TXD1, DBG_PSRAM_DQ7
IO37 GPIO37, UART0_TXD, GPSPI SPI2 IO7
VO4 Power Output (0.5~2.7V or 3.3V, max 0.2A)
IO38 GPIO38, UART0_RXD, GPSPI SPI2 DQS
IO48 GPIO48, SD1_CDATA7_PAD, GMAC_PHY_RXER_PAD
IO39 GPIO39, SD1_CDATA0_PAD, REF_50M_CLK_PAD
IO47 GPIO47, SD1_CDATA6_PAD, GMAC_PHY_RXD1_PAD
IO40 GPIO40, SD1_CDATA1_PAD, GMAC_PHY_TXEN_PAD
IO46 GPIO46, SD1_CDATA5_PAD, GMAC_PHY_RXD0_PAD
IO41 GPIO41, SD1_CDATA2_PAD, GMAC_PHY_TXD0_PAD
IO45 GPIO45, SD1_CDATA4_PAD, GMAC_PHY_RXDV_PAD
IO42 GPIO42, SD1_CDATA3_PAD, GMAC_PHY_TXD1_PAD
IO53 GPIO53, GMAC_PHY_RXD1_PAD, ADC2_CHANNEL6, ANA_COMP1
IO43 GPIO43, SD1_CCLK_PAD, GMAC_PHY_TXER_PAD
IO54 GPIO54, GMAC_PHY_RXER_PAD, ADC2_CHANNEL7, ANA_COMP1
IO44 GPIO44, SD1_CCMD_PAD, GMAC_RMII_CLK_PAD
IO31 GPIO31, GPSPI SPI2 Q, EMAC PHY RXER, DBG_PSRAM_HOLD
IO30 GPIO30, GPSPI SPI2 CK, EMAC PHY RXD1, DBG_PSRAM_WP
IO49 GPIO49, GMAC_PHY_TXEN_PAD, ADC2_CHANNEL2
IO29 GPIO29, GPSPI SPI2 D, EMAC PHY RXD0, DBG_PSRAM_Q
IO50 GPIO50, GMAC_RMII_CLK_PAD, ADC2_CHANNEL3
IO28 GPIO28, GPSPI SPI2 CS, EMAC PHY RXDV, DBG_PSRAM_D
IO51 GPIO51, GMAC_PHY_RXDV_PAD, ADC2_CHANNEL4, ANA_COMP0
IO34 GPIO34, GPSPI SPI2 IO4, EMAC PHY TXD0, DBG_PSRAM_DQ6
IO52 GPIO52, GMAC_PHY_RXD0_PAD, ADC2_CHANNEL5, ANA_COMP0
IO35 GPIO35, GPSPI SPI2 IO5, EMAC PHY TXD1, DBG_PSRAM_DQ7

The table below lists the pin names and functions for the J6 header.

Name Function
3V3 3.3V power output
IO23 GPIO23, ADC1_CHANNEL7, REF_50M_CLK_PAD
3V3 3.3V power output
IO22 GPIO22, ADC1_CHANNEL6
3V3 3.3V power output
IO21 GPIO21, ADC1_CHANNEL5
IO20 GPIO20, ADC1_CHANNEL4
GND Ground
IO19 GPIO19, ADC1_CHANNEL3
GND Ground
IO18 GPIO18, ADC1_CHANNEL2
GND Ground
IO17 GPIO17, ADC1_CHANNEL1
GND Ground
VCC_5V 5V power output
EN GPIO16, ADC1_CHANNEL0
IO1 GPIO1, LP_GPIO1, XTAL_32K_P
IO15 GPIO15, LP_GPIO15, LP_UART_RXD_PAD, TOUCH_CHANNEL13
IO0 GPIO0, LP_GPIO0, XTAL_32K_N
IO14 GPIO14, LP_GPIO14, LP_UART_TXD_PAD, TOUCH_CHANNEL12
IO9 GPIO9, UART0_CTS_PAD, SPI2_CK_PAD, LP_GPIO9, TOUCH_CHANNEL7
GND Ground
IO6 GPIO6, SPI2_HOLD_PAD, LP_GPIO6, TOUCH_CHANNEL4
GND Ground
VIN_5V 5V power input
IO13 GPIO13, UART1_CTS_PAD, LP_GPIO13, TOUCH_CHANNEL11
VIN_5V 5V power input
IO12 GPIO12, UART1_RTS_PAD, LP_GPIO12, TOUCH_CHANNEL10

3. Power Specifications

The WT9932P4-MINI-A1 development board can be powered using any of the following methods:

  • External power via the Type-C debugging interface
  • External power via the USB Type-C interface
  • Using the VIN_5V power input with DuPont wires at the appropriate voltage